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Poison Distribution Resulting in a Desired Power Distribution

Constantine P. Tzanos

Applied Physics Division
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ABSTRACT

The problem of determination of the poison distribution (control rods,

burnable poison) in a reactor which results in a desired power distribution

is formulated and solved as a linear programming problem. For realistic

reactor problems (two or three dimensions, more than one neutron group)

the resulting LP problem is very large and its solution by known LP routines

is inefficient. To avoid this difficulty a method is developed which cal-

culates all the required input to start the LP algorithm from solutions

of the neutronic equations.

The output of the LP algorithm in addition to the poison distribution

gives the corresponding flux distribution.
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POISON DISTRIBUTION RESULTING IN A DESIRED POWER DISTRIBUTION

INTRODUCTION

The total power output of a reactor of given size depends on the maxi-

mum allowable power density and the power distribution. The thermal and

mechanical reactor designs are also based on a given power distribution.

Fuel depletion during the course of reactor operation causes the power dis-

tribution to change. This change can be controlled, within certain design

limits, by application of proper poison management procedures (control rod

withdrawal and insertion patterns, burnable poison distribution, etc.).

Therefore, if a desired power distribution has been specified, a calcula-

tional method is required to determine the initial poison distribution and

its variation during reactor operation so that the desired power distribu-

tion is realized.

In usual depletion calculations after each depletion step the search

for the control rod distribution which satisfies reactor criticality and

a desired power distribution is done iteratively in a trial and error

fashion.
I
 This places a heavy computing burden on the conventional de-

pletion calculations.

Crowther
1 developed the Power-Control method for solution of steady-

state neutron diffusion-theory problems for BWR's in which the material

nuclear properties depend strongly on the power distribution. The Power-

Control method is also an iterative method. In a two neutron group model,

it starts with a desired initial power distribution and determines a poi-

son distribution which satisfies reactor criticality and the desired power

distribution. But constraints such as the absorber concentration be non-



2

negative, less than a certain magnitude and be non-continuously distri-

buted but in certain finite steps, may not be satisfied by the determined

poison distribution. To satisfy these constraints an iterative algorithm

is applied. The determined poison distribution is changed so that the con-

straints are satisfied. From the revised poison distribution a new power

distribution is calculated and reactor criticality is checked. If the

reactor is not critical the new power distribution is used to calculate

another poison distribution satisfying the new power distribution and reac-

tor criticality. The iterations are repeated until a poison distribution

is determined which satisfies the required physical constraints, reactor

criticality and a power distribution close to the desired distribution.

Turney and Fenech 2 used dynamic programming and a direct flux-synthesis

method to determine the control rod program which minimizes power peaking

throughout the life of a PWR. Dynamic programming gives a systematic ap-

proach which discards nonoptimal paths as soon as possible and leads to a

significant reduction in the number of paths to be considered over those

resulting by a straight factorial approach of all possible options. But

even though, for the problem of interest the number of paths to be considered

is large. Turney and Fenech to reduce this number considered only two con-

trol banks and imposed the constraint that the control rods must always

move only in three prescribed manners, namely: a) moving only the outer

bank; b) moving both the same; and c) moving only the inner bank but never

allowing it to be further out than the outer bank.

Workers of the Halden Reactor Project
3 have formulated in terms of

quadratic programming the problem of determination of the control rod posi-

tions which minimize a weighted sum of squares of deviations between pre-
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dicted and desired power densities and they have developed an algorithm

for the solution of the problem. The method is proposed for on-line

use during reactor operation and the required parameters are directly

obtained from the reactor by on-line identification techniques.

In this study, the problem of determination of the poison distri-

bution (control rods, burnable poison) in a reactor which results in a

desired power distribution is formulated and solved as a linear program-

ming problem. For realistic reactor problems (two or three dimensions,

more than one neutron group) the resulting LP problem is very large and

its solution by known LP routines requires excessive computer time and

gives rise to prohibitive roundoff errors. To overcome this difficulty

a more efficient method than the known methods of the LP routines is

developed which calculates all the required input to start the LP al-

gorithm from solutions of the neutronic equations (multigroup diffusion

equations, transport theory equations, etc.).

The present method by using LP does not rely on trial and error,

physical constraints on the poison concentration are directly treated,

it does not have the dimensionality problem of dynamic programming,

which arises from the large number of paths required to be examined

for a realistic problem, and has all the computational advantages of LP

compared to other optimization techniques. For the neutronic discription

many neutron groups can be used.

Numerical applications of the method are presented for a fast reac-

tor of infinite cylindrical geometry.



4

THEORY

I.	 Formulation of the Problem 

In the context of multigroup diffusion theory, the i'th neutron

group flux jr) and the power density W(T) are given by the relations

V.1)
i
(')Vq)

i
(T)
 - a,i

.6)(1).6) -	 1(i,h)6)(Pi(T)
h=i+1

i-1 .	 N

	

1(h±i)(-rh(r)	 /	 ')11 /f,h(r)'Ph(r)
h= 1	 h=1

— P
N (r)a	 .

i (
1) (r) = 0	 (i = 1 ,...,N)

p	 a,

W(r) = 
1111 

/f
'
h(r)h(r)

where

1).(r) = diffusion coefficient for group i

—
1a,i (r) = macroscopic absorption cross section for group i

(the poison absorption cross section is not included)

y (1,h) (r) = macroscopic downscattering cross section for transfer

from group i to group h by elastic and inelastic

scattering

k = k
eff

x = fraction of neutrons born into group i

l f,h (r) = macroscopic fission cross section for group h

vh = number of neutrons released per fission induced by neutrons

of the h'th group

N	 = poison concentration
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a
a,i 

= microscopic absorption cross section of poison

material for group i

N = number of neutron groups

In Eqs. (1) it has been assumed that absorption is the only important

neutron interaction with poison. But other interactions can also be

Included.

If the poison distribution is perturbed by 6N (0 around an operating

distribution N°(-;7), and if the perturbation is small, second order terms

can be neglected and Eqs. (1) are written as

X n (—V . D i (r)V0 i (r) -	 -a,i r	 r)	 y	 X,i,h)(00i(r)
h=i+1

1-1

Y	 /(h-o-i)(r)°h(r) 	 k	 I	 vh/f,h(r)°11(r)
h= 1	 h=1

- N° (T)a P 0 ( r-) - (SN(r)o 1 (r) = 0 (z = 1,...,N) 	 (3)
p	 a,i i	 p	 a,

The superscript "o" is used to denote quantities evaluated at the operating

poison distribution N°6-.).

If the reactor is critical, k = 1, at the operating distribution

N°(T), to remain critical after the perturbation, the distribution N(r)

must satisfy a criticality condition. Such a condition is given by per-

turbation theory in the form

p
(r)	 aP e(-1--)e(T)dT- = 0
_ N

i= 1	 a ' i i	 1
V

(4)
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where

V = reactor volume

*i = adjoint flux for group i

Eqs. (2), (3) and (4) can be written as a set of algebraic equations

by using an appropriate method for this, for example by using the finite

difference technique for differentiation and the trapezoidal rule for

integration. This set of algebraic equations is written as

L A. + (3 6N	 +	 M 6N*	 = 0

Pert 6N	 + Pert 6N*	 = 0	 (5)
P,2,

P
	

+ E S	 = ED

where

L = the matrix which results from the terms of Eqs. (3) con-

taming the flux vector

6N	 = the Vth component of the poison distribution vector
P,k

6N , 6N = [ON	 , 614*]
--P	 1),1 --P

= the vector which results from the last term of Eqs. (3)

containing the component ON

M = the matrix which results from the last term of Eqs. (3)

containing the components of vector ON*

Pert k , Pert = quantities resulting from Eq. (4)

P = the matrix which results from Eq. (2)

= the desired power distribution vector
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S = a positive slack vector resulting from the difference of

the desired power distribution and the existing power dis-

tribution

E = a matrix whose elements are zero or one and their signs

are defined such that vector S is positive

The poison distribution vector 6N has been split into two main components,
--P

6N	 and 6N* in Eqs. (5) for reasons which will become apparent later.
--P

The vector	 in Eqs. (5) is normalized such that for any vector 614 one of

the components of the vector S, and always the same, has the value zero.

In the subsequent discussion, it is assumed that the reader is fami-

liar with the concepts, theorems, and terminology of linear programming

discussed in standard texts (e.g., Ref. 4).

In terms of Eqs. (5), the problem of determination of the poison dis-

tribution which results in the desired power distribution is stated as

follows. Determine a vector 6N such that Eqs. (5) are satisfied with all

the components of the vector S equal to zero.

If the vector S is positive, the requirement to make all its components

equal to zero is equivalent to minimizing the quantity

Z =	 Si
i

where S. is the i i th component of the vector S. Since relations (5) and

(6) are linear, the just cited problem can be stated as a linear programming

problem as follows: Determine the vector 6N such that Eqs. (5) are satisfied
--V

and

Z = 1 S. = Minimum = 0 .

(6)



Therefore linear programming can be used if it can be assured that S re-

mains always positive. But if S is positive in the initial basic feasible

solution the LP algorithm keeps it positive at the following iteration

steps. Therefore it is needed to assure only that S is positive in the

initial basic feasible solution. This is done easily by defining the signs

of the elements of matrix E such that S is positive in the initial basic

feasible solution.

(5) in compact form asRelations and (6) can be written a more

where

A	 =	 4. X2_2

Z = C x

A=

x	 =	 [L,	 (SBI	 ,,,	 6N*,	 S]
P, 1	--P

a	 +	 + xna	 = b

o	 Pert 	 0

Q.	 0

Q.

(7)

(B)

(9a)

(9b)

8

c = [o, o, o, 1]

= [0, 0, Lipj

a. = i'th column of matrix A
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II. Determination of a Basic Feasible Solution 

Eqs. (7) are a set of m linear equations in n unknowns (n > m). Ac-

cording to the LP theory, for the solution of the just stated LP problem

it is required to know a basic feasible solution of Eqs. (7)

	

= B-1 b	 (10)

and the vectors

	

y. = B
-1 

a.	 = m+1,n)
— -7

where B is a nonsingular matrix whose columns are any m linearly inde-

pendent columns from A and a j (j = m+1,n) are the columns of A out of B.

A basic feasible solution and the vectors y l can be obtained from

relations (10) and (11) by inverting a basic matrix B. If the size of B

is large its inversion requires excessive computer time and gives rise to

prohibitive roundoff errors. The size of B depends on the reactor geometry,

the number of neutron groups, and on how the desired power distribution is

defined.

To control the shape of the power density distribution a continuous

poison distribution is required. In practical reactor designs the poison

distribution (control rods, burnable poison) is not continuous. There is

a finite number of control rods and a finite number of different burnable

poison concentrations. By varying them the power density distribution

cannot be matched point by point to a desired power density distribution.

This difficulty is avoided if the reactor is divided into a number of

regions R, and in each region a desired value is assigned either to the

average power density or to the peak power density and as desired power
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distribution is defined the distribution of these values. The number R

must be smaller or equal to the number of control rods.

Even for a small number of regions, R, and a simple reactor geometry

matrix B remains large. For example, for a 1-D reactor divided into

four regions, one hundred mesh points and for five neutron groups matrix B

is of the order of 500x500. The inversion of B can be avoided by noting

that a basic feasible solution and the vectors yl can be obtained from

solutions of the multigroup diffusion equation as follows. For 0 = 0

Eqs. (5) are reduced to

Perti . 0	 = 0	 (12)

pip	

+E S°

The vector A° is the solution of the multigroup diffusion equations

with poison distribution N°(r--) (the operating poison distribution). The

components of the vector S° are the difference between the components

of the vectors WD and P 1°. The elements of the matrix E are defined

such that the vector S° is a positive vector. As has already been men-

tioned, i° is normalized such that one of the components of the vector

S° is equal to zero.

It is obvious that

= Le, 0, el	 (13)

is a basic feasible solution of the optimization problem defined by
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Eqs. (7) and (8) and corresponds to a basis matrix

[

I:	 Pert	 0

0

III. Determination of the Vectors xi

The vectors . are solutions of the equations

B	 = a .	 (15)

where ai are the columns of matrix A out of the basis matrix B. Since

B has been defined by Eq. (14), a. is the j'th column of the matrix

T
 = [

Per tl

0

If the poison distribution is perturbed around the operating poison dis-

tribution N° by
-P

dN	 = [dN	 .,0,...,0]	 (17)
--P	 p,i	 P,J

where (51,1* , is the j'th component of the vector 6N*, and such that the
P,J

reactor remains critical, Eqs. (5) are written

B= (14)

(16)

	

L + S 6N	 + .LoN* .
-1 P, Z	J P,J

	

Pert 0	 + Pert.0* .
9.	 P, 2,	J	 P,J

P

=U

= 0	 (18)

+ E S	 = W
—D

Subtraction of Eqs. (12) from Eqs. (18) gives



6N
P,k Pert 2

 -6N* .
= Pert.	 (19)

=0

12

L (1-i°) + 9 6N	 I3.6N* .

	

P, k	P,J

	

Pert 6N	 + Pert.6N*

	

k P, k	J P,J

P (/-_to)

=0

=0

+E(S-e) = 0

A.7.e 6N
ELL__L + (3

	

-6N* .	 --9, -6N* .

	

P,J	 P,J

Or

=

P,J

But the coefficient matrix of (19) is B and [_y Pert., 0} is the jith

column of matrix T. Therefore

6N	 S-S0
(20)

	P,J	 P,J	 P,J

In conclusion, a good approximation to the vector yi is obtained

as follows: The operating poison distribution is perturbed by

6N = [6N
k
 ,0,...,6N* 3.,0,...0]	 (21)

—13	 P,	 P,

where 6N* . is a small known quantity such that second order terms can
P,J

be neglected and 6N	 is determined by perturbation theory (Eq. (4)).
P,k

The multigroup diffusion equations are solved and the flux vector is

normalized the same way as it was normalized in the determination of the

basic feasible solution. Then /I is determined by Eq. (20).
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The determination of the basic feasible solution and the vectors yi

from standard solutions of the multigroup diffusion equations, renders to

the method the advantage that it can be used for any reactor geometry.

For complex reactor geometries the limitations are basically the same as

for the solution of the multigroup diffusion equations. The inversion

of the basis matrix B would limit the applicability of the method to

simple geometries and very few neutron groups.

IV. Remarks 

If I is the number of components of the vector (51 ,1*p (number of dif-

ferent poison concentrations -1), I solutions of the multigroup diffusion

equations are required to determine the vectors xi 0 = 1,0. Therefore

the computation time required to calculate yt increases linearly with I.

Some computer time saving can be achieved if a good starting flux guess

is available. Since 611* . is a small perturbation, the flux vector 1°
P,J

of the basic feasible solution could be such a guess. The numerical

applications of the method show that the use of A° as a starting flux

saves considerable computation time.

Since the flux vector I is greater than zero the columns of the

basis matrix B which correspond to the vector 	 cannot be removed out

of basis. Therefore in each LP iteration the calculations to determine

the column to be removed out of basis can be restricted only to the

columns corresponding to the vectors (SN and S. This is a great cora-

putational advantage since the number of columns corresponding to the

flux vector	 is much greater than the number of columns corresponding

to the vectors 0 and S. For example, at the 1-D problem mentioned
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earlier there are 500 columns corresponding to the flux vector and only

seven columns corresponding to the vectors 6N and S.

Since the components of the vector 6N are unrestricted in sign,

for the columns corresponding to the vector 0 the LP algorithm for

unrestricted variables is applied.
4 This does not impose any specially

additional computation requirements. For the columns corresponding to

the vector S the standard algorithm for positive variables is applied

(j1 is ..?_11).

The treatment of constraints on the poison concentration of the form

q. < 6N	 < u.
J	 P,J	 J

whereq.andu.are known lower and upper limits, is straightforward
3

and the same as in standard methods of LP routines.
4
 Since the previous

mathematical analysis does not add anything new with respect to them,

in order to avoid notational complications, they have not been included

in it.

NUMERICAL RESULTS

For the application of the developed method a computer code has been

written and numerical results have been obtained for a fast reactor of

infinite cylindrical geometry. The code is divided into two main parts.

The first one solves the multigroup diffusion and multigroup adjoint

equations to obtain the basic feasible solution and the vectors y l . The

second part uses as input the basic feasible solution and the vectors yl

and does the optimization calculations. As has been mentioned the method

can be used for any reactor geometry. For its numerical application to
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a given geometry it is only required to - use in the first part of the

computer code routines which solve the multigroup diffusion and multi-

group adjoint equations for the given geometry.

The reactor has been divided into four core regions. Two numerical

tests have been performed. In the first one the poison distribution

has been determined which results in a desired average power density

distribution. In the second test the poison distribution has been

determined which results in a desired peak power density distribution.

As poison has been used a fictitious material having an atomic

density equal to the molecular density of UO 2 and absorption cross

sections equal to twice the corresponding absorption cross sections of

UO2 . The other poison cross sections have been taken as equal to zero.

For the neutronic calculations five neutron groups have been em-

ployed.

The reactor dimensions and composition are given in Tables I and

II respectively. The sum of the Na and poison volume fractions has

been constrained to be equal to 50%. This means that if poison is re-

moved it is replaced by Na and if poison is added it replaces Na.

Table III shows the initial (operating) poison distribution, the

initial power distribution and the desired power distribution. The

poison distribution which results in the desired power distribution

(optimum poison distribution) is shown in Table IV. Because of the

approximations made in the development of the method, the power distri-

bution which results from the computed optimum poison distribution does

not agree exactly with the desired power distribution given as an input.

The resultant power distribution is also shown in Table IV.
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As it is shown in Table III, the ratio of the maximum average power

density to the minimum average power density for the initial poison

distribution is 2.237. The same ratio of the peak power densities is

2.136. The desired power distributions are much flatter than the

initial distributions. The just mentioned ratios for the desired dis-

tributions are 1.373 and 1.232 respectively. They are by 38.6% and 42.3%

smaller than their respective values in the initial power distributions.

Comparison of the desired and resultant power distributions (Table IV)

shows the following. The ratio of the maximum average power density to

the minimum average power density of the initial power distribution has

been reduced to 1.439 or by 35.7% instead of the desired 38.6%. The

same ratio of the peak power densities has been reduced to 1.243 or by

41.8% instead of the desired 42.3%.

Taking into account that second order terms in poison absorption

(Eqs. (3)) have been neglected and that the desired distributions are con-

siderably different than the initial distributions, the agreement be-

tween desired and resultant power distributions must be considered as

very good. As it should be expected this agreement becomes better as

the initial and desired distributions get closer. In Table V are shown

the results obtained for a desired distribution closer to the initial

distribution than in the previous cases. The ratio of the maximum average

power density to the minimum average power density in the desired dis-

tribution is by 25.2% smaller than in the initial distribution. In the

resultant distribution the same quantity is by 26.1% smaller than in

the initial distribution. As it was expected, the agreement between

resultant and desired distributions is better than in the previous case.
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It must be pointed out that if there is a large difference between

the initial and desired distributions, the solution can be improved by

running the code twice where the output of the first run has been used as

input of the second run.

The output of the LP algorithm in addition to the poison distribution

which results in the desired power distribution gives also the corresponding

flux distribution (see Eq. (9b)). The flux distribution obtained from

the optimization part of the developed code has been compared with the

flux distribution obtained from a direct solution of the multigroup dif-

fusion equations where as input has been used the optimum poison distribution.

They differ by less than ' n,6% for the poison distributions of Table IV

and by less than ',3% for the poison distribution of Table V. The agree-

ment in the second case is better because the initial and desired power

distributions are closer than in the first case.

Thevectors.have been obtained from solutions of the multigroup

diffusion equations by applying small known perturbations on the operating

poison distribution (Eqs. (20), (21)). The sensitivity of the optimum

poison distribution to the magnitude of the perturbation 61,1* . has been
P,J

examined. Computations have been performed with (SN* . equal to 0.01,
P,J

0.02, 0.03. The obtained optimum poison distributions are practically

the same.

The computer time for the calculations is equal to the time required

for: one solution of the multigroup diffusion equations to obtain the

basic feasible solution (Eqs. (12)), one solution of the adjoint multigroup

diffusion equations to obtain the vector [Pert, Pert] (Eqs. (5)), I (num-

ber of different poison concentrations -1) solutions of the multigroup
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diffusion equations to obtain the vectors yl , plus the time required for

the LP iterations. As has been already mentioned, computer time can be

savedifasastartingfluxforthecalculationofthevectors.the

flux vector 
••O

	 the basic feasible solution is used. In the discussed

numerical applications I is equal to three, 2t° has been used as a starting

flux for the calculation of yi , while for the calculation of lc' and the

solution of the adjoint equations a flat starting flux has been used. The

computationtimeforthevectors.and the LP iterations on a CDC 3300

is slightly less than the time required to calculate 1°. Since the computer

time for the solution of the adjoint equations is about equal to the time

required to obtain 1°, the total computation time is about equal to three

times the computation time required to obtain 1 3 by solving the multigroup

diffusion equations.

SUMMARY AND CONCLUSIONS

The problem of determination of the poison distribution in a reactor

which results in a desired power distribution is formulated and solved as

a linear programming problem. For realistic reactor problems (two or three

dimensions, many neutron groups) the resulting LP problem is very large and

its solution by known LP routines requires excessive computer time and gives

rise to prohibitive roundoff errors. To avoid this difficulty, all the in-

put required to start the LP algorithm is not calculated by the known

methods of the LP routines but from solutions of the neutronic equations.

By this way the computational problems are practically eliminated to those

of the methods used to solve the neutronic equations.

The output of the LP algorithm in addition to the poison distribution

gives the corresponding neutron flux distribution. Thus if the method is
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incorporated in a depletion code, it determines: a) the poison distribution

which retains the reactor critical and results in the desired power distri-

bution, and b) the neutron flux for the depletion calculations of the next

step.

The developed method can be also used to determine the distributions

of any materials in the reactor which result in a desired power distribution

or maximize or minimize reactor parameters which either are or after

linearization become linear functions of the neutron flux and the material

concentrations.

The present method can form the basis of further work towards the

aevelopment of an automatic control system where a computer using data from

the reactor determines the control rod patterns and feeds them directly to

the control rod adjustment system of the reactor.
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Table I. Reactor Dimensions

Inner Radius	 Outer Radius
Region
	

(cm)	 (cm)

Core 1 0.00 55.68

2 55.68 80.04

3 80.04 97.44

4 97.44 111.36

Radial Blanket 5 111.36 156.60
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Table II. Reactor Composition

Core Regions	 Atomic or Molecular

(vol %)	 Density for Pure

Material	 1	 2

Pu02	3.829	 3.927

UO2	31.171	 31.073

Fe

Na
1

Poison

Materials
3 4 Blanket (1024 cm-3)

4.736 5.775 0.025189

30.264 29.225 35 0.024444

15 15 0.084870

50 0.025410
50

0.024444
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Table III. Initial Poison and Power Distributions
and Desired Power Distribution

	

Relative Average	 Relative Peak

	

Power Density	 Power Density

Region
Poison

(vol %) Initial Desired Initial Desired

1 1.670 2.237 1.373 2.136 1.232

2 7.226 1.542 1.287 1.493 1.141

3 7.226 1.287 1.210 1.215 1.122

4 12.049 1.000 1.000 1.000 1.000
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Table IV. Optimum Poison Distributions, Resultant Power Distributions
and Desired Power Distributions

	

Relative Average	 Relative Peak

	

Power Density	 Power Density

Region
Poison
(vol %) Resultant Desired

Poison
(vol %) Resultant Desired

1 5.020 1.439 1.373 4.735 1.243 1.232

2 4.011 1.295 1.287 4.779 1.126 1.141

3 6.178 1.209 1.210 5.297 1.113 1.122

4 6.551 1.000 1.000 6.612 1.000 1.000
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Table V. Optimum Poison Distribution, Resultant and
Desired Power Distributions for a Desired

Distribution Closer to the Initial
Distribution Than in the Case

of Previous Table

Relative Average
Power Density 

Poison
Region
	

(vol %)	 Resultant	 Desired

1 2.819 1.653 1.673

2 6.531 1.266 1.287

3 9.257 1.150 1.163

4 2.377 1.000 1.000
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